P2k-factorization of complete bipartite multigraphs
نویسنده
چکیده
We show that a necessary and sufficient condition for the existence of a P2k-factorization of the complete bipartitemultigraph )"Km,n is m = n == 0 (mod k(2k l)/d), where d = gcd()", 2k 1).
منابع مشابه
Bipartite Symmetric Digraph
P2p -factorization of a complete bipartite graph for p, an integer was studied by Wang [1]. Further, Beiling [2] extended the work of Wang[1], and studied the P2k -factorization of complete bipartite multigraphs. For even value of k in Pk -factorization the spectrum problem is completely solved [1, 2, 3]. However for odd value of k i.e. P3 , P5 and P7 , the path factorization have been studied ...
متن کاملP 9 - Factorization of Complete Bipartite Graph
Pk -factorization of a complete bipartite graph for k, an even integer was studied by H. Wang [1]. Further, Beiling Du [2] extended the work of H.Wang, and studied the P2k-factorization of complete bipartite multigraph. For odd value of k the work on factorization was done by a number of researchers[3,4,5]. P3-factorization of complete bipartite graph was studied by K.Ushio [3]. P5-factorizatio...
متن کاملExcessive factorizations of bipartite multigraphs
Let G be a multigraph. We say that G is 1-extendable if every edge of G is contained in a 1-factor. Suppose G is 1-extendable. An excessive factorization of G is a set F = {F1, F2, . . . , Fr} of 1-factors of G whose union is E(G) and, subject to this condition, r is minimum. The integer r is called the excessive index of G and denoted by χ′e(G). Analogously, let m be a positive integer. We say...
متن کاملDegree-bounded factorizations of bipartite multigraphs and of pseudographs
For d ≥ 1, s ≥ 0 a (d,d + s)-graph is a graph whose degrees all lie in the interval {d,d +1, . . . ,d +s}. For r ≥ 1, a≥ 0 an (r,r+1)-factor of a graph G is a spanning (r,r+a)-subgraph of G. An (r,r+a)-factorization of a graph G is a decomposition of G into edge-disjoint (r,r +a)-factors. We prove a number of results about (r,r+a)-factorizations of (d,d+s)-bipartite multigraphs and of (d,d + s)...
متن کامل1-factor Covers of Regular Graphs
We consider minimal 1-factor covers of regular multigraphs, focusing on those that are 1-factorizations. In particular, we classify cubic graphs such that every minimal 1-factor cover is also a 1-factorization, and also classify simple regular bipartite graphs with this property. For r > 3, we show that there are finitely many simple r-regular graphs such that every minimal 1-factor cover is al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 21 شماره
صفحات -
تاریخ انتشار 2000